给定一个三角形 triangle ,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。
相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。
示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2:
输入:triangle = [[-10]]
输出:-10
解题思路一、
在本题中,给定的三角形的行数为 nn,并且第 ii 行(从 00 开始编号)包含了 i+1i+1 个数。如果将每一行的左端对齐,那么会形成一个等腰直角三角形,如下所示:
[2]
[3,4]
[6,5,7]
[4,1,8,3]动态规划解题:定义、初始化、以及转移方程。
// 经典的动态规划入门题 定义 初始化 转移方程
public int minimumTotal(List<List<Integer>> triangle) {
int[][] dp = new int[triangle.size()][triangle.size()];
// 初始化
dp[0][0] = triangle.get(0).get(0);
int i,j;
// 遍历行
for(i=1;i<triangle.size();i++) {
// 列为0的时候 转移方程
dp[i][0] = triangle.get(i).get(0);
// 列
for(j=1;j<i;j++) {
dp[i][j] = Math.min(dp[i-1][j-1], dp[i-1][j]) + triangle.get(i).get(j);
}
// 列与行相等
dp[i][j] = dp[i-1][j-1] + triangle.get(i).get(j);
}
// 从最后一行 遍历得到最小值
int res = Integer.MAX_VALUE;
for(j=0;j<triangle.size();j++) {
res = Math.min(res, dp[triangle.size()-1][j]);
}
return res;
}
解题思路二、找最小路径和。从上往下走与从下往上走是一样的,只不过转移方程不一样而已,而且由列来决定。
// 定义并将其赋值为0
int[] dp = new int[triangle.size()+1];
// 定义行
int row = triangle.size();
// 从最后一行开始走
for(int i=row-1;i>=0;i--) {
// 列从一开始走
for(int j=0;j<=i;j++) {
// 转移方程
dp[j] = Math.min(dp[j],dp[j+1]) + triangle.get(i).get(j);
}
}
return dp[0];